
On the binary expansions of algebraic numbers

David H. Bailey1, Jonathan M. Borwein2 , Richard E. Crandall3, and Carl Pomerance4

17 March 2003

Abstract
Employing concepts from additive number theory, together with results on binary

evaluations and partial series, we establish bounds on the density of 1’s in the binary
expansions of real algebraic numbers. A central result is that if a real y has algebraic
degree D > 1, then the number #(|y|, N) of 1-bits in the expansion of |y| through bit
position N satisfies

#(|y|, N) > CN1/D

for a positive number C (depending on y) and sufficiently largeN . This in itself establishes
the transcendency of a class of reals

∑
n≥0 1/2f(n) where the integer-valued function f

grows sufficiently fast; say, faster than any fixed power of n. By these methods we
re-establish the transcendency of the Kempner–Mahler number

∑
n≥0 1/22n

, yet we can
also handle numbers with a substantially denser occurrence of 1’s. Though the number
z =

∑
n≥0 1/2n2

has too high a 1’s density for application of our central result, we are able
to invoke some rather intricate number-theoretical analysis and extended computations
to reveal aspects of the binary structure of z2.
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1. Introduction

Research into the statistical character of digit expansions is often focused on the
concept of normality. We call a real number b-normal if its base-b digits are random in a
certain technical sense (see [26], [18], [3], and references therein). Qualitatively speaking,
b-normality requires every string of k consecutive base-b digits to occur, in the limit, 1/bk

of the time, as if the digits are generated by tossing a “fair” b-sided die. In spite of
the known fact that almost all numbers are b-normal (in fact almost all are absolutely
normal, meaning b-normal for every base b = 2, 3, . . . ) not a single, shall we say “genuine”
fundamental constant such as π, e, log 2 is known to be b-normal for any b. Artificially
constructed normals are known, such as the 2-normal binary Champernowne number

C2 = (0.11011100101110 . . . )2,

obtained by sheer concatenation of the binary of positive integers. Previous research
that motivates the present work includes [3], where a certain “Hypothesis A” relevant to
chaotic maps is shown to imply 2-normality of π, log 2, ζ(3); and [4], where the historical
work of Korobov, Stoneham and others is augmented to establish b-normality of, shall
we say, “less artificial” constants such as the numbers

∑
n≥0 1/(cnbc

n
) where b, c > 1

are coprime. Intriguing connections with yet other fields—such as ergodic theory—are
presented in [19].

Of interest for the present work is that all real algebraic irrationals are widely believed—
shall we say suspected—to be absolutely normal. This suspicion is based on numerical and
visual evidence that the digit expansions of algebraics do appear empirically “random.”
Yet again, the mathematical situation is as bleak as can be: Not a single algebraic real
is known to be b-normal, nor has a single algebraic real irrational been shown not to be
b-normal; all of this regardless of the base b. Though we expect every irrational algebraic
real is absolutely normal, for all we know it could even be that some algebraics are abso-
lutely abnormal, i.e. not b-normal for any b whatsoever (absolutely abnormal numbers do
exist; see [24]).

Herein we focus on the binary scenario b = 2, and though we do not achieve normality
results per se, we establish useful lower bounds on the occurrence of 1-bits in positive
algebraics. Our central result is that if y is a real algebraic of degree D > 1, then there
exists a positive number C (depending only on y) such that for sufficiently large N the
number #(|y|, N) of 1’s in the binary expansion of |y| through the N -th bit position
satisfies

#(|y|, N) > CN1/D.

To achieve this bound we borrow ideas from additive number theory; in particular we
employ the notion of additive representations. This notion is combined with our own
bounds on the count of 1-bits resulting from binary operations, and also with previous
observations on “BBP tails” that arise from arbitrary left-shifts of infinite series. In
Section 6 we define and elaborate on BBP tails.
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Irrational numbers y for which #(|y|, N) cannot achieve the above bound for any de-
gree D are necessarily transcendental. In this way we easily re-establish the transcendency
of the Kempner–Mahler number

M =
∑
n≥0

1

22n ,

first shown to be transcendental by Kempner [16], but the transcendency cannot be estab-
lished directly from the celebrated Thue–Siegel–Roth theorem on rational approximations
to algebraics (there are interesting anecdotes concerning Mahler’s approach to this im-
passe; see [22]). Incidentally, the number M above is sometimes called the Fredholm
number, but this attribution may be historically erroneous [30]. (See also [1] for more on
the number M .)

We can also handle numbers having a higher density of 1’s than does M . For example,
by our methods the Fibonacci binary

X =
∑
n≥0

1

2Fn

having 1’s at Fibonacci-number positions 0, 1, 1, 2, 3, 5 . . . is transcendental. Now X was
proved transcendental some decades ago [23] and explicit irrationality measures and cer-
tain continued-fraction properties are known for X [31]. In the present treatment, we can
handle numbers like X but where the growth of the exponents is more general than the
classic growth of the Fn.

With our central result we establish the transcendency of numbers whose 1-bits are
substantially more dense than in the above examples, an example of such a “denser”
number being ∑

n≥3

1

2�nlog log n� .

Incidentally, in the late stages of the present research project we found that this notion
of “digital thinking” to establish results in analysis had been foreshadowed by a specific,
pedagogical proof by M. Knight [17] that for any base b > 1

∑
n≥0

1

b2n

is transcendental (note that b = 2 gives the number M above). The author used terms
such as “islands” for flocks of digits guarded on both sides by enough zeros to avoid carry
problems when integral powers of a real number are taken. As will be seen, such notions
pervade also our own treatment; however our results pertain to general 1-bit densities and
not to specific real numbers. Other historical foreshadowings of our approach exist [29]
[21]. (See also our Section 11 on open problems.)
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Aside from transcendency results, we can employ the central theorem to establish
bounds on the algebraic degree. For example, we shall see that

∑
n≥0

1

2nk ,
∑

p prime

1

2pk

must have algebraic degrees at least k, k + 1 respectively. (In this context we think of a
transcendental number as having infinite degree.) Thus for example,

∑
1/2p2

must be an
at-least-cubic irrational.

There are interesting numbers that do not fall under the rubric of our central theorem,
such as the “borderline” case:

z =
∑
n≥0

1

2n2 =
1

2

(
1 + θ3

(
1

2

))
,

where θ3 is the standard Jacobi theta function. The problem is that #(z,N) ∼ √
N , so

our central theorem does not give any information on the algebraic degree of z. Yet we
are able to use further number-theoretical analysis—notably the theory of representations
of integers as sums of two squares—to establish quadratic irrationality for z. We further
argue, on the basis of such analysis, that z2 has almost all 0’s, and more precisely that the
1’s count through theN -th bit position has a certain asymptotic behavior. Incidentally the
number z, being essentially the evaluation of a theta function at an algebraic argument, is
known to be transcendental by other methods [5, 9]. We stress that our binary approach
is an apparently new way to look at such issues.

2. Additive representations

For any real nonnegative number x we consider the binary expansion

x = (. . . x−3x−2x−1x0 . x1x2x3 . . . )2.

The assignment of (finitely many) nonpositive indices for bits xi to the left of the decimal
(or if you will, binary) point is a convenience, for we shall, of course, be concentrating
a great deal on the bits to the right. We adopt the convention that no x can end with
infinitely many successive 1’s, and this forces uniqueness of the binary expansion. Next
we denote the 1’s-position set of x by

P(x) = {p : xp = 1},
and further define r1(x, p) = 1 if xp = 1, else 0. (The rationale for the notation “r1” will
be momentarily evident.) Now the number of 1-bits through bit position N inclusive is

#(x,N) =
∑
m≤N

r1(x,m) =
∑

p∈P(x), p≤N

1.
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Note that when x is a nonnegative integer, #(x, 0) is the number of 1’s in x. So for
example #(7, 0) = 3. On the other hand, for x =

√
2 = (1.011010100 . . . )2, say, we have

#(x, 0) = 1, #(x, 5) = 4, and so on.
We next introduce the representation count

rd(x, n) = #{(p1, . . . , pd) ∈ Pd : p1 + · · · + pd = n},
just as in additive number theory where one studies representations of integers n as sums
of primes, or squares, and so on. It is evident that rd can be expressed as an acyclic
convolution:

rd(x, n) =
∑

i+j=n

rd−1(x, i)r1(x, j).

We shall also employ a step-function on integers r, namely H(r) = 1 if r > 0, else 0. Thus
H(rd(n)) = 1 signifies that n has at least one representation p1 + · · ·+pd. For our analysis
it is a simple but useful combinatorial observation that the count of representables, call
it

ρd(N) =
∑
n≤N

H(rd(x, n)),

satisfies

ρd(N) ≤
∑
n≤N

rd(x, n) ≤ #(x,N)d. (1)

Also of use will be an attractive relation for positive integral powers of x:

xd =
∑

n

rd(x, n)

2n
.

Unfortunately it is in general extremely difficult to convert partial knowledge of the rep-
resentation sequence (rd(x, n)) into precise results on the binary expansion of xd. The
problem is that of carry: A summand rd(x, n)/2n possibly causes carry, about lg rd posi-
tions to the left, and thus the summands interfere (herein lg x means the base-2 logarithm
of x). It can be said that the goal of the present treatment is the circumvention of this
carry problem.

An instructive digression is appropriate here. With a view to additive number theory,
let us define the number

G =
∑

p prime, odd

1

2(p−1)/2
= (0.11101101 . . . )2.

Note that #(G,N) = π(2N + 2) − 1, where π is the standard prime-counting function.
Then r2(G,N) is precisely the number of representations of 2N + 2 as a sum of two odd
primes. Even if we knew the truth of the Goldbach conjecture—in this scenario, that every
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N > 2 has H(r2(x,N)) = 1—we would still not immediately know the binary expansion
of G2, because of the carry problem. For all we know, it could be that the question of
irrationality for G2 is more difficult than the Goldbach conjecture itself. Conversely, it
is unclear whether complete knowledge of the binary expansion of G2 would yield results
on the celebrated conjecture. In fact, it is easy to see that r2(G,N) is unbounded, so
arbitrarily long carries (deposition of bits arbitrarily far to the left of a given position)
can be expected.

Similarly, for the number z =
∑

n≥0 2−n2
introduced earlier we know that z4 has a

representation sequence (r4(z
4, 0), r4(z

4, 1), . . . ) of all positive entries, on the basis of the
Lagrange theorem that every nonnegative integer is a sum of four squares. Here again,
little can be gleaned about the binary expansion of z4 from this perspective, again because
of carry. We study the number z further in Section 9.

Now back to positive powers of x and representation lists. A sum we later call a “tail
component” defined

Td(x,R) =
∑
m≥1

rd(x,R +m)

2m
,

which we note is 2R times a partial series for the power xd, can be bounded via combina-
torial observations, as in

Theorem 2.1: For x ∈ (1, 2) (whether algebraic or not) and d ≥ 1 we have

rd(x, n) ≤
(
n+ d− 1
d− 1

)
.

Moreover, for the sum Td defined above, we have for 0 ≤ R ≤ N the upper bound

Td(x,R) <
(R + d)d

(d− 1)!(R + 1)
≤ (N + d)d

(d− 1)!(N + 1)

and the average bound ∑
0≤R≤N

Td(x,R) <
(N + d)d

(d− 1)!
.

Proof: From the convolution

rd(x, n) =
∑

i+j=n

rd−1(x, i)r1(x, j)

we have

rd(x, n) ≤
∑

i1+···+id∈[0,n],
∑

ij=n

1 =

(
n+ d− 1
d− 1

)
.
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Thus Td(x,R) ≤ Ud(R) where

Ud(R) =
∑
m≥1

1

2m

(
R +m+ d− 1

d− 1

)
.

This expression is seen to satisfy the recurrence relation

Ud(R) = 2Ud−1(R) +

(
R + d− 1
d− 1

)
,

which can be used to establish a finite form for Ud:

Ud(R) =
d−1∑
j=0

(
R + d
j

)
.

So we have

Ud(R) <
(R + d)d−1

(d− 1)!

∑
n≥0

(
d− 1

R + d

)n

=
(R + d)d

(d− 1)!(R + 1)
.

Thus, the first bound follows. The bound on the sum
∑
Td is simply obtained by summing

the first bound over the stated range of R. QED

Remark 2.2 : The finite form for Ud(R) noted above is a polynomial in R with nonneg-
ative coefficients and with main term Rd−1/(d− 1)!, so that this expression is not only a
lower bound for Ud(R), but is also equal to it asymptotically. Moreover, it is possible to
express Ud(R) as a hypergeometric integral:

Ud(R) =
(R + d)!

R!(d− 1)!

∫ 1

0

(2 − x)d−1xR dx.

We admit that the bounds of Theorem 2.1 and the present remark are actually stronger
than what we need here; however, such stronger bounds could be useful in future research.

3. Preliminary bound on 1’s density

Let x be a real algebraic irrational. The Thue–Siegel–Roth theorem [28] says that for
any ε > 0 the inequality ∣∣∣x− a

b

∣∣∣ < 1

b2+ε

has at most finitely many integer-pair solutions a, b. This means that the 1-bits of such
an x cannot be too far apart, in the sense of

Theorem 3.1: For a real positive algebraic irrational number x, and any δ > 0, the 1’s
positions pi ∈ P(x) satisfy, for sufficiently large m,

pm < (2 + δ)pm−1.
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Furthermore, for sufficiently large k, the interval(⌊
k

2 + δ

⌋
, k

)

always contains a 1’s position. Finally, the 1’s count through sufficiently large position n
satisfies

#(x, n) > (1 − δ) lg n.

Proof: When x is irrational, P(x) is an infinite set, so arbitrarily large pi can be chosen,
with

x−
∑

p∈P (x), p≤pi

1

2p
<

2

2pi+1
.

Now the sum is a rational a/b with b = 2pi , and so the first inequality of the theorem is
clearly satisfied if pi is large enough. The rest of the conclusions are immediate from said
inequality. QED

The bound #(x, n) > (1 − δ) lg n is admittedly weak, relative to what we aim to prove
later. It does, however, establish the transcendency of any number

mα =
∑
n≥0

1

2�αn�

for any real α > 2. Mahler observed that the number M = m2 =
∑

n≥0 1/22n
lies just

out of reach of the Thue–Siegel–Roth implications, and went on to establish profound
functional-equation methods to establish the transcendency of M [22], [25]. We shall be
able to use our binary approach to establish, in fact, the transcendency of mα for any real
α > 1.

There is a curious aspect to Theorem 3.1, namely, however weak the bounds on 1’s
counts may be, there is a crucial juncture in what follows (the central Theorem 7.1) where
we need Theorem 3.1 to assail the ubiquitous problem of carry propagation.

4. Bounds for binary evaluations

For nonnegative integers n we have defined #(n, 0) as the number of 1’s in the binary
expansion of n. We proceed to give convexity relations on binary evaluations, i.e. on sums
and products of integers, starting with some simple observations:

Lemma 4.1: For integers n > 0, j ≥ 0, we have

#(n, 0) ≤ 1 + lg n ≤ n,

#(2jn, 0) = #(n, 0),
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#(n+ 2j, 0) = #(n, 0) + 1 − kj,

where in the last relation kj is the number of consecutive 1’s in n counting from the
(−j)-th position inclusive, to the left.

Proof: The first inequality follows from the observation that the total number B(n) of
bits in n (counting 0’s and 1’s) satisfies 2B(n)−1 ≤ n, and #(n, 0) ≤ B(n). The second
statement is obvious (left-shifting by j bits introduces no new 1’s). The third statement
follows by the simple rule of add-with-carry. QED

This lemma leads to

Theorem 4.2 (Convexity relations): For nonnegative integers m,n we have upper
bounds on the 1’s counts of evaluations, as

#(m+ n, 0) ≤ #(m, 0) + #(n, 0),

#(mn, 0) ≤ #(m, 0)#(n, 0).

Proof: The first, additive relation follows by repeated application of the last equality of
Lemma 4.1, one application for each 1-bit of m, say. The second, multiplicative relation
follows in similar fashion, by writing mn = (

∑
2−p)n, where p runs through the 1’s

positions of m, and using the second (shift) relation of Lemma 4.1. QED

It would greatly enhance the present study if we could obtain lower bounds on the 1’s
counts of binary evaluations. The extreme difficulty of such a program can be exemplified
in several ways. Consider the famous factorization of the 7-th Fermat number, namely
2128 + 1, but expressed in binary:

100000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000001 =

11010011111010101111110000111010111100010100011000000001 ×
1001101010100000001110111010110110100100011001100001100101011101000000001

which display dashes any hope of a useful, unconditional lower bound on #(mn, 0). Also
interesting is this: If a Mersenne number p = 2q − 1, with q prime, say, is a product of
two prime factors, say p = fg, then the convexity Theorem 4.2 implies #(f, 0)#(g, 0) >
#(p, 0) = q (recall q is prime so this # product cannot be q), which means that the factors
f, g cannot both be too sparse with 1’s. For example, 211 − 1 = 23 · 89 and each factor
has four 1’s; sure enough 4 · 4 > 11.

But for the present study on real numbers, there is a more telling disappointment in
regard to lower bounds on 1’s densities of products. Consider two sets of integers:

S = {n ≥ 0 : n−2j = 0} = {0, 2, 8, 10, 32, 34, 40, 42, . . . },
T = {n ≥ 0 : n−2j+1 = 0} = {0, 1, 4, 5, 16, 17, 20, 21, . . . } = S/2,
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so that elements of S, T have 0-bits in all even, odd positions respectively. Now define
associated real numbers:

xS =
∑
s∈S

1

2s
, xT =

∑
t∈T

1

2t
.

It is not hard to show that both of these real-numbers have “square-root” 1’s densities, that
is both #(xS, N),#(xT , N) are roughly of order

√
N , so that both xS, xT are irrational;

in fact the sum xS +xT is irrational, since the intersection of the S, T sets is just {0} and
so there is only one trivial carry for the sum. However, all of this having been said, it
turns out amazingly enough that one has rational product

xSxT = 2 = (10.0000 . . . )2,

which reveals that two numbers each with square-root 1’s density can have an extremal
1’s density, in this case a zero density because of carry. By looking at the representation
counts for integers in S+S one may show x2

S, x
2
T , hence (since 2xSxT = 4) also (xS +xT )2

are irrational. In any case, we shall be able to handle certain real numbers whose 1’s
count is genuinely less than

√
N .

Back to the manageable case of upper bounds for binary evaluations, consider the
polynomial

f(x) = ADx
D + AD−1x

D−1 + . . . A1x+ A0,

for integers Ai all nonnegative. Then from Lemma 4.1 and Theorem 4.2 we easily have,
for nonnegative integers n, the following convexity relation for polynomial evaluations:

#(f(n), 0) ≤
D∑

d=0

max(0, 1 + lgAd)#(n, 0)d ≤ f(#(n, 0)).

This relation will next be applied to algebraic numbers whose minimum integer polynomial
has all coefficients (except A0) nonnegative.

5. Application of binary-evaluation bounds

Our strongest bounds on 1’s density will be obtained for the class of real algebraic
irrationals for which the coefficients of the minimum integer polynomial are nonnegative,
except for the constant term. We begin with

Lemma 5.1: For irrational x ∈ (1, 2) and a given integral power d, the inequality

0 < xd − �2Nx�d

2Nd
<
d2d

2N

holds for all sufficiently large N .

Proof: Setting i = �2Nx�, we have 2N ≤ i < 2N+1, and x = i/2N +z, where z ∈ (0, 1/2N ).
Now

xd =
id

2Nd
(1 + 2Nz/i)d,
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so that

0 < xd − id

2Nd
<

id

2Nd
((1 + 1/i)d − 1).

Choose M such that d < i for N > M , whence

xd − id

2Nd
<

id

2Nd

2d

i
< (e− 1) d

2(N+1)(d−1)

2Nd
<
d2d

2N
.

QED

We are now in a position to state

Theorem 5.2: Let y be a real algebraic of degree D > 1 and assume for x = |y|/2�lg |y|�

a minimum integer polynomial equation

ADx
D + AD−1x

D−1 + . . . A1x+ A0 = 0,

where AD > 0 and AD−1, . . . , A1 are nonnegative integers. Then for any ε > 0 we have

#(|y|, N) > (1 − ε)(1 + lgAD)−1/DN1/D

for sufficiently large N (with threshold depending on y, ε).

Proof: Note that x ∈ (1, 2) and because x is a shift of y, the counts #(x,N),#(y,N)
differ only by an integer constant, so we may concentrate on x. Observe that A0 is a
negative integer. From Lemma 5.1 we can select N and assign i = �2Nx� so that

xd =
id

2Nd
+ zd,

with zd ∈ (0, d2d/2N), for 1 ≤ d ≤ D. Now define the integer

YN = 2ND

D∑
d=1

Adi
d2−Nd = 2ND

D∑
d=1

Ad

(
xd − zd

)
,

so that

−A0 =
YN

2ND
+ zN ,

where

0 < zN =
D∑

d=1

Adzd <
1

2N

D∑
d=1

d2dAd.

(It is this last inequality where the signs of the Ai, i > 0 are essential.) Thus for sufficiently
large N we have a fractional part{

YN

2ND

}
= {−A0 − zN} = {1 − zN} ≥ 1 − C

2N
> 0
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for a strictly positive constant C =
∑D

d=1 d2
dAd independent of N . But this means for

some constant C ′ (also independent of N) that the integer YN has more than N − C ′ 1-
bits. Since #(i, 0) = #(x,N), on using Theorem 4.2, we have (again using in an essential
way that Ai ≥ 0 for i > 0)

N − C ′ < #(YN , 0) ≤
D∑

d=1

max(0, 1 + lgAd)#(x,N)d (2)

≤ #(x,N)D

(
(1 + lgAD) +

AD−1

#(x,N)
+ . . .

)
, (3)

and since #(x,N) is unbounded (x is irrational) the result follows. QED

A side result is

Corollary 5.3: If y > 0 is irrational, and there exists an integer d > 1 such that for
every η > 0 we have

#(y,N) < ηN1/d

for infinitely many N , then yd is also irrational.

Proof: Assuming yd is rational then for x = y/2�lg y� there is a polynomial Axd −B, with
positive integers A,B. This polynomial is of the required form for application of Theorem
5.2, whose conclusion contradicts lim inf #(y,N)N−1/d = 0. QED

So for example the number (∑
n≥0

1

2n5

)4

is irrational; the number being 4-th-powered does not, in the sense of Corollary 5.3, have
enough 1-bits.

Theorem 5.2 reveals that the assignments y =
√

2 or y = (−1 +
√

5)/2 (the golden
mean) each have #(y,N) > (1− ε)√N for large enough N ; in the latter case one may use
the polynomial equation x2 + 2x− 4 = 0, whose root −1 +

√
5 is in (1, 2). On a historical

note: J. Samborski, in a published problem [29], asked for a proof that #(y,N) < 5·2N−2—
an interesting, hard bound but asymptotically very much weaker than our square-root
density.

6. Bounds on BBP tails

Now we desire to lift all restrictions on the coefficient signs, except the high coefficient
AD > 0 and contemplate the following representation relation (in this section we assume
x ∈ (1, 2) is algebraic of degree D > 1, see the remarks opening the proof of Theorem
5.2):

ADx
D + · · · + A1x+ A0 = 0 = A0 +

∑
n≥0

1

2n

D∑
d=1

Adrd(x, n).
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Consider a shift by R bits of all entities, so that

−2RA0 = I(x,R) + T (x,R),

where I(x,R) is an integer and the BBP tail is defined

T (x,R) =
∑
m≥1

1

2m

D∑
d=1

Adrd(x,R +m) =
D∑

d=1

AdTd(x,R),

where as in Section 2 we identify a tail component

Td(x,R) =
∑
m≥1

rd(x,R +m)

2m
.

The concept of BBP tail comes from the Bailey–Borwein–Plouffe formalism [2], whereby
one may rapidly compute isolated bits of certain binary expansions—such as for π, log 2
—by rapid computation of the integer I(x,R) and rigorous control of the “tail” T (x,R).

Remarkably, it is a fact that for the algebraic x in question, T (x,R) is always an
integer, for the simple reason that T (x,R) = −2RA0 − I(x,R). To facilitate further
analysis, we shall require a bound on the average absolute value of the tails T (x,R) in
terms of one value of #(x,N):

Lemma 6.1: Let x be an algebraic number in (1, 2) of degree D > 1 with minimum
integer polynomial ADx

D + AD−1x
D−1 + · · · + A0, so AD > 0. Let N ≥ 2D and set

K = �2D lgN	. Then for 1 ≤ d ≤ D we have∑
1≤R≤N−K

Td(x,R) < #(x,N)d + 1,

and so ∑
1≤R≤N−K

|T (x,R)| <
D∑

d=1

|Ad|
(
#(x,N)d + 1

)
.

Proof: We have∑
R≤N−K

Td(x,R) =
∑
m≥1

2−m
∑

R≤N−K

rd(x,R +m)

≤
K∑

m=1

2−m
∑
R≤N

rd(x,R) + 2−K
∑
m>K

2K−m
∑

R≤N−K

rd(x,R +m)

<
∑
R≤N

rd(x,R) + 2−K
∑

K≤R≤N

Td(x,R).
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Using (1) and Theorem 2.1 we have∑
1≤R≤N−K

Td(x,R) ≤ #(x,N)d +N−2D(N + 1)d,

and the lemma is proved. QED

We shall use Lemma 6.1 to show that if #(x,N) is small, then not too many values
of T (x,R) are positive. Counter to this, the following lemma gives conditions on when
there are many positive tails T (x,R).

Lemma 6.2: Let x be an algebraic number in (1, 2) of degree D > 1. Suppose that
R0 < R1 are positive integers with rD−1(x,R) = 0 for all integers R ∈ (R0, R1] and
T (x,R1) > 0. Then T (x,R) > 0 for every integer R ∈ [R0, R1].

Proof: Say the minimum integer polynomial for x is ADx
D +AD−1x

D−1+· · ·+A0. As the
0-bit of x is 1 it follows that rd(x,N) ≥ rd−1(x,N) for d ≥ 2. Thus the hypothesis implies
that for each d = 1, 2, . . . , D−1 we have rd(x,R) = 0 for each integer R ∈ (R0, R1]. From
the general recurrence relation on tails,

T (x,R− 1) =
1

2
T (x,R) +

1

2

D∑
d=1

Adrd(x,R) =
1

2
T (x,R) +

1

2
ADrD(x,R).

Assuming inductively that T (x,R) > 0, and using AD > 0, we get T (x,R−1) > 0. QED

7. The central theorem regarding general real algebraic numbers

We have established that for a certain restricted class of algebraics y of degree D ≥ 2,

#(|y|, N) > (1 − ε)(1 + lgAD)−1/DN1/D

for sufficiently large N , where AD is the leading coefficient of the minimum integer poly-
nomial for the normalized algebraic x = |y|/2�lg |y|�. Now we move to general algebraics,
so that there will be no coefficient constraints except for the natural AD > 0. Fortunately,
we shall achieve a bound which is weaker only by an overall constant factor.

Theorem 7.1: For real algebraic y of degree D > 1 and for any ε > 0 we have for
sufficiently large N (with threshold depending on y, ε)

#(|y|, N) > (1 − ε)(2AD)−1/DN1/D,

where AD > 0 is the leading coefficient of the minimum integer polynomial of x =
|y|/2�lg |y|�.

Proof: As in the proof of Theorem 5.2, we use the normalized algebraic x ∈ (1, 2),
observing that #(x,N),#(|y|, N) differ only by an integer constant, so again we may

14



concentrate on the bit-counting for x. Suppose #(x,N) ≤ cN1/D. Then from (1) applied
for d = D − 1, and the fact that each rD−1(x,R) is a nonnegative integer, we have that
the number of integers R ≤ N with rD−1(x,R) > 0 is at most cD−1N1−1/D. Say these R’s
are 0 = R1 < R2 < · · · < RM , where M ≤ cD−1N1−1/D. Let RM+1 = N . Trivially we
have

M∑
i=1

(Ri+1 −Ri) = N.

For δ > 0, let I denote the set of numbers i ≤ M such that Ri+1 − Ri ≥ δ
3
c1−DN1/D.

(Ultimately we transform δ into the ε of the theorem.) We have

∑
i∈I

(Ri+1 −Ri) ≥ N − δ

3
c1−DN1/DM ≥

(
1 − δ

3

)
N.

Now we wish to show, if i ∈ I and if integer R ∈ (Ri, Ri+1−D logN ] has rD(x,R) > 0,
then T (x,R− 1) > 0:

T (x,R− 1) ≥ 1

2
AD −

D−1∑
d=1

|Ad|
∑
m≥1

2−mrd(x,R− 1 +m)

=
1

2
AD −

D−1∑
d=1

|Ad|
∑

m>Ri+1−R

2−mrd(x,R− 1 +m)

=
1

2
AD −

D−1∑
d=1

|Ad|2R−Ri+1Td(x,Ri+1 − 1)

≥ 1

2
−N−D

D−1∑
d=1

|Ad|(N + d)d/(d− 1)!N ,

where this last inequality follows from Theorem 2.1. Thus, for sufficiently large N , the
positivity of the tail T (x,R − 1) for such an R is established. Now if r1(x, j) > 0 and
i ≤ M then rD(x,Ri + j) > 0. A key observation now is: By the Thue–Siegel–Roth
implication Theorem 3.1, for N sufficiently large and for any i ∈ I, there is some integer
ji with

ji ∈
(

1

2 + δ/2
(Ri+1 −Ri −D logN), Ri+1 −Ri −D logN

)
and r1(x, ji) > 0. We conclude that rD(x,Ri + ji) > 0, so it follows from our previous
reasoning that T (x,Ri + ji−1) > 0. Then from Lemma 6.2 we have T (x,R) > 0 for every
integer R ∈ [Ri, Ri + ji). Hence T (x,R) > 0 for at least

1

2 + δ/2

∑
i∈I

(Ri+1 −Ri −D logN)
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values of R ≤ N . But this last expression is at least

1

2 + δ/2

(
1 − δ

3

)
N −DcD−1N1−1/D logN

which is at least (1
2
− δ

3
)N for all sufficiently large values of N .

We now show that if c is too small, this last conclusion is impossible. By Lemma 6.1
we have (with K as in the lemma)

∑
R≤N−K

|T (x,R)| ≤
D∑

d=1

|Ad|(#(x,N)d + 1)

≤
D∑

d=1

|Ad|(cdNd/D + 1)

= ADc
DN +O(N1−1/D).

Suppose now that c ≤ ((2 + δ)AD)−1/D. It follows from this last calculation and the fact
that each T (x,R) is an integer that T (x,R) > 0 for at most 1

2+δ
N +O(N1−1/D) values of

R ≤ N . So for N sufficiently large, this assertion is incompatible with the assertion that
T (x,R) > 0 for at least (1

2
− δ

3
)N values of R ≤ N . Finally, for the arbitrary positive δ

we set ε = 1 − (1 + δ/2)−1/D to obtain the statement of the theorem. QED

8. Implications of the central theorem

Theorem 7.1 can be used to establish transcendency of a class of binary expansions,
as in

Theorem 8.1: Let a function f : R → R be strictly monotonic increasing, with f
attaining integer values for integer arguments. If for any ε > 0 the inverse of f satisfies

f−1(y) = O(yε)

then the number

x =
∑
n≥0

1

2f(n)

is transcendental.

Proof: Note that the bit positions f(n) are distinct, so the observation

f−1(N) = #{n > 0 : f(n) ≤ N} = #(x,N)

means #(x,N) = O(N ε), which for algebraic x is incompatible with Theorem 7.1. QED
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Corollary 8.2: For any real α > 1 the number

mα =
∑
n≥0

1

2�αn�

is transcendental. So the Mahler number M = m2 and the Fibonacci binary involving
the Fibonacci numbers (Fn) = (0, 1, 1, 2, 3, 5, . . . )

X =
∑
n≥0

1

2Fn

are transcendental. Finally, there are transcendental numbers of still greater 1-bit densi-
ties, such as

Y =
∑
n≥3

1

2�nlog log n� .

Remark: Recall that the Thue–Siegel–Roth implication Theorem 3.1 handles α > 2.

Proof: As for mα, take n0 = �− log(α − 1)/ logα	 so that there is a strictly monotone
function whose ineteger evaluations are f(n) = �αn+n0	, with f−1(N) = O(logN), so
that Theorem 8.1 applies and the partial binary sum for mα starting from index n0, hence
mα itself, is transcendental. As for the Fibonacci binary, the n-th Fibonacci number can
be written f(n) = ((1 + τ)n − (−τ)n))/

√
5, where τ = (

√
5 − 1)/2, so the growth of 1’s

positions is essentially that of m1+τ and again incompatible with Theorem 7.1 if X is
assumed algebraic. For the number Y it is evident that #(Y,N) ∼ N1/ log log N which is of
slower growth than any positive power of N . QED

We can also use Theorem 7.1 to generate results on algebraic degrees for certain constants,
as in the following (as before let us stipulate that the algebraic degree of a transcendental
is ∞):

Theorem 8.3: For positive integer k the number

Xk =
∑
n≥0

1

2nk

has algebraic degree at least k, while the number

Pk =
∑

p prime

1

2pk

has algebraic degree at least k + 1.

Proof: In the first case, #(Xk, N) = #{nk ≤ N} < CN1/k, so by Theorem 7.1 we must
have degree D ≥ k. In the second case we have #(Pk, N) = #(pk ≤ N) = π(N1/k) <
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AN1/k/(logN) for a constant A, so that again by Theorem 7.1, we must have D > k.
QED

Thus for example neither P2 nor X3 is a quadratic irrational. The case of X2 is just the
previously mentioned number z =

∑
1/2n2

, on which number we focus attention in the
next section.

9. Study of a “borderline” number

The number

z =
∑
n≥0

1

2n2 =
1

2

(
θ3

(
1

2

)
+ 1

)

is, with respect to the present treatment, a “borderline” case because, as we have seen,
a square-root density of 1’s is beyond reach of our methods. Recall also as in Section 4
that there are numbers with the same essential density of 1’s as z but for which products
of such numbers can be rational. Note that

z′ = 2z − 1 = θ3

(
1

2

)

so that

z′2 =
∑
n≥0

r2(n)

2n
,

where now we are using the standard notation of r2(n) for the number of representations
n = a2 + b2 for a, b ∈ Z, counting sign and order. It will be convenient therefore to
study z′, from which algebraic properties of z follow. Incidentally z′2 has some interesting
numerological features; for one thing it is very close to π/ log 2; in fact the approximation

z′2 ≈ π

log 2

(
1 + 2e−π2/ log 2

)2

= 4.53237201425897410082795 . . .

can be obtained via Jacobi θ-transformation, and remarkably is correct to the implied 23
decimal places in the above display. It is fascinating that such relations between z′2 and
fundamental constants exist even though, as we shall prove, almost all of the binary bits
of z′2 are 0’s.

It is one of the earliest results in additive number theory, due to Jacobi, that

r2(n) = 4
∑

d|n,d odd

(−1)(d−1)/2.

It turns out that the representation count r2(n) is positive if and only if every prime
p ≡ 3(mod 4) dividing n does so to an even power. Thus, the representation sequence
(r2(0), . . . ) has zeros in any position n = 3k with (3, k) coprime, and so on. Deeper results
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on r2 include the fact that the number of representable integers not exceeding N behaves
according to the Landau theorem:

∑
n≤N

H(r2(n)) ∼ L
N√
logN

,

where the Landau constant is

L =


1

2

∏
p≡ 3 (mod 4)

(
1 − 1

p2

)−1



1/2

= 0.764223653 . . . .

(See [12] for descriptions of this and other facets of sums of squares.) The Landau density
of representable numbers does not on the face of it imply a similar density of 1-bits in the
expansion of z′2.

Evidently we have

z′2 = 4
∑
d odd

(−1)(d−1)/2

2d − 1
.

This form is reminiscent of the Erdős–Borwein number

E =
∑
n>0

1

2n − 1
=
∑
m>0

d(m)

2m
,

where d(m) denotes the number of divisors of m. The constant E was proven irrational
by Erdős [10] who used number-theoretical arguments (outlined in [4]) which did, in fact,
motivate our present analysis of z′2. Later the irrationality of such forms was established
via Padé approximants, by P. Borwein [6].

What we shall show is that z′ is not a quadratic irrational, and so neither is z. In
one sense this is stronger than the quoted irrationality results for the number E. On the
other hand, it is already known that theta functions at algebraic arguments, hence z, z′,
are transcendental [5, 9]. To effect our nonquadratic-irrationality proof, we shall follow
the same basic prescription as for Theorem 7.1; namely, we establish upper bounds on the
size of representations, and employ some knowledge of zero-runs. As for upper bounds, it
is known [14] that for any fixed ε > 0 we have

r2(n) < 2( 1
2
+ε) log n

log log n

for sufficiently large n. Note that this bound is much tighter than the general one of
Theorem 2.1. This tighter bound works well with what we can show about zero-runs:

Theorem 9.1: Let ε > 0 be arbitrary, but fixed, and define

uε(x) =
1 − ε

2L

log x√
log log x
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where L is the Landau constant. Then for sufficiently large x there is a square integer M
with M < x and an integer a < M such that r2(n) = 0 whenever

n ≡ a+ i (mod M), 1 ≤ i ≤ uε(x).

Proof. Let x be large and let

u =

⌊
1 − ε

2L

log x√
log log x

⌋
.

Let vp(n) denote the exponent on the prime p in the prime factorization of n. Cast out
from [1, u] any integer o with vp(n) odd for some prime p < u/ log u, p ≡ 3 (mod 4). Let
E denote the set of remaining numbers n, and let E denote the cardinality of E . Also, let
E1 denote the number of integers in [1, u] which are the sum of two squares, and let E1

denote the cardinality of E1. By the Landau theorem,

E1 ∼ Lu√
log u

.

Clearly, E1 ⊂ E . In particular, E−E1 is at most the number of integers n ∈ [1, u] divisible
by some prime p with u/ log u ≤ p ≤ u and p ≡ 3 (mod 4). Then

E − E1 ≤ u
∑

u/ log u≤p≤u

1

p
= O (u log log u/ log u) .

We conclude that

E ∼ Lu√
log u

.

Label the members of E as n1, n2, . . . , nE.
Next, let M1 =

∏
pap , where p runs over the primes with p ≡ 3 (mod 4), p < u/ log u,

and ap = 2�(log u)/(2 log p)	. (Thus, ap is the least even integer with pap ≥ u.) We have
logM1 = O(u/ log u).

Let

v =

⌊
log x

1 + ε

⌋
,

and let M2 =
∏
p2 where p runs over the primes p ≡ 3 (mod 4) with u/ log u ≤ p ≤ v.

Then logM2 ∼ v, so that for x sufficiently large we have M := M1M2 < x. Label the
prime factors of M2 as p1, p2, . . . , pF , where F ∼ v/(2 log v). We have

E ∼ Lu√
log u

∼ 1 − ε

2

log x

log log x
,

F ∼ v

2 log v
∼ 1

2(1 + ε)

log x

log log x
,
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so that for x sufficiently large we have F ≥ E.
For 1 ≤ i ≤ E let ri be a solution to

ni + riM1 ≡ pi (mod p2
i ).

Further, let the integer r satisfy

r ≡ ri (mod p2
i ), for 1 ≤ i ≤ E.

Let h be an arbitrary integer. If n is an integer in [1, u] that is not in E , then
vp(n + rM1 + hM) is odd for some prime p|M1 and so r2(n) = 0. Suppose n = ni ∈ E .
Then vpi

(n + rM1 + hM) = 1, and so r2(n) = 0. Thus, with a = rM1 we have that
r2(a+ i+ hM) = 0 for 1 ≤ i ≤ u. This completes the qroof of the theorem. QED

Corollary 9.2: For integer n sufficiently large, the interval (n2, n2+n) contains a zero-run
of the r2 representation of length at least uε(n).

Proof: Take x = n/3 in Theorem 9.1. Then for relevant M and a, the position

n2 + (a+ 1 +M − (n2 mod M)) ≤ n2 + 2n/3

is the start of a zero-run of length uε(n/3) ∼ uε(n), which run for sufficiently large n is
contained in (n2, n2 + n). QED

We are now in a position to use representation bounds and the zero-run bound of Theorem
9.1, to establish

Theorem 9.3: The number z =
∑

n≥0 1/2n2
is not a quadratic irrational.

Proof: We shall focus on the number z′ =
∑

n∈Z 1/2n2
whence the result will follow for

z. Assume that
A2z

′2 + A1z
′ + A0 = 0,

Consider the interval [n4, (n2 + 1)2] and within that, positions

n4, n4 + f, n4 + f + Z, n4 + n2, (n2 + 1)2.

By Corollary 9.2, for sufficiently large n, these positions are in order, with a zero-run
length Z = �uε(n

2)�, so that (r2(n
4 +f +1), . . . , r2(n

4 +f +Z)) is a length-Z zero-vector.
Note also that r1(n

4) = r1((n
2 + 1)2) = 1, yet every other r1 in the entire interval is zero.

Thus

T (z′, n4 + n2 − 1) ≥ 1

2
− |A1|

2n2 > 0.

Thus any tail T (z′, n4), . . . , T (z′, n4 +n2−1) is positive. However, using the upper bound
on r2(n) to bound the tail component T2(z

′, n4 + f), we get

T (z′, n4 + f) ≤ 2A2

2Z
2(2+4ε) log n/ log log n +

|A1|
22n2−f

.
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Since Z has the
√

log log n denominator, we have for sufficiently large n

0 < T (z′, n4 + f) < 1,

a contradiction. QED

We now state the following result, which was first suggested to us by numerical compu-
tation.

Theorem 9.4: Almost all bits of z2 are 0’s; in fact the 1’s-count has asymptotic behavior

#(z2, N) ∼ C0
N√
logN

,

for an absolute constant C0 ≈ 0.7996 . . . (we give a formula for C0 in the proof).

Clearly, Theorem 9.4 implies that z2 is irrational (because of arbitrarily long zero-runs),
and Theorem 9.3 may well follow also from the asymptotic 1’s density (although see
Section 11). Incidentally the asymptotic density also holds for z′2, as follows from a slight
modification (actually simplification) of the proof. In spite of the paucity of 1’s for these
squared numbers, higher powers such as z3, z4 are likely 2-normal. Indeed, all such higher
powers will involve interfering carries. For example, it is known that r3(n) > 0 for a
limiting fraction 5/6 of all n (see [12]), so the carry problem for z3 is already formidable.

The proof of Theorem 9.4 is based on the following two lemmas.

Lemma 9.5: There is an absolute constant c such that for any integers N,B ≥ 2, the
number of integers n ≤ N with r2(z, n) > 0 and r2(z,m) > 0 for some integer m with
0 < |n−m| < B is at most cBN/ logN .

Lemma 9.6: For any positive integersB,N , the number of integers n ≤ N with r2(z, n) ≥
B is at most (

√
N + 1)2/B.

Note that Lemma 9.6 is very easy. The assertion follows instantly from the inequality∑
n≤N r2(z, n) ≤ (

√
N + 1)2. We postpone the proof of Lemma 9.5 until later. First we

see how Theorem 9.4 follows from the lemmas.
Let b(m) = #(m, 0) denote the number of 1’s in the binary representation of the

nonnegative integer m, and let b(0) = 0. It follows from Theorem 4.2 and the fact that
r2(z, n) ≤ no(1) that for N large,

#(z2, N) ≤
∑

n≤N+log N

b(r2(z, n)).

The goal is to get a similar-looking lower bound. Let SN denote the set of natural numbers
n ≤ N such that n is not a square and

r2(z, n) > 0,

r2(z,m) = 0 for 0 < |n−m| < 3 lg lgN,

r2(z,m) < (lgN)2 for |n−m| < 2 lgN.
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Note that if n ∈ SN and N is sufficiently large then

∑
m>n

r2(z,m)

2m
<

1

2n
. (4)

Indeed, we first note that

∑
m≥n+2 lg N

r2(z,m)

2m
<

∑
m≥n+2 lg N

m

2m
= O

(
1

N2n

)
.

Next note that ∑
n+2 lg N>m>n

r2(z,m)

2m
=

∑
n+2 lg N>m≥n+3 lg lg N

r2(z,m)

2m

≤
∑

n+2 lg N>m≥n+3 lg lg N

(lgN)2

2m

= O

(
1

2n lgN

)
.

Thus, we have (4). Further, for n ∈ SN and N large we have

∑
m≥n

r2(z,m)

2m
<
r2(z, n) + 1

2n
<

(lgN)2 + 1

2n
<

1

2n′ ,

where n′ < n is the largest number with r2(z, n
′) > 0. We conclude from these estimates

that appearing in the bit stream for z2 we see intact all of the bits of the numbers r2(z, n)
for n ∈ SN , when N is large. Thus, we have for large N that

#(z2, N) ≥
∑

n∈SN

b(r2(z, n)).

It follows from the lemmas that the number of integers n ≤ N with r2(z, n) > 0 that
are not in SN is O(N log logN/ logN). The number of 1-bits contributed to #(z2, N)

from n ≤ N with n �∈ SN and r2(z, n) < 2(log N)1/4
is at most

O

(
(logN)1/4N log logN

logN

)
= o

(
N√
logN

)
.

And, by Lemma 9.6 there are at most O(N/2(log N)1/4
) values of n ≤ N with r2(z, n) >

2(log N)1/4
. Since b(r2(z, n)) = o(log n), the contribution of these values of n to #(z2, N)

is also o(N/
√

logN). It follows that

#(z2, N) =
∑
n≤N

b(r2(z, n)) + o(N/
√

logN).
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Using the identity z′2 = 4z2−4z+1 and that r2(n) = 4r2(z, n) when n is not a square,
and r2(n) = 4r2(z, n) − 4 ≥ 0 when n is a positive square, we further see that

#(z2, N) =
∑
n≤N

b(r2(n)) + o(N/
√

logN).

Hence it is sufficient to estimate this last sum.
Suppose n = n1n2n3 where ni is the largest divisor of n composed of primes that are

congruent to i (mod 4). We have r2(n) > 0 if and only if n3 is a square. And if n3 is a
square, then r2(n)/4 = d(n1), where d is the standard divisor function. It follows that if
n3 is a square and if g(n) denotes the largest squarefull divisor of n1 then r2(n)/d(g(n))
is a power of 2, so that

b(r2(n)) = b(d(g(n))).

Incidentally by squarefull is meant an integer none of whose prime factors appears to the
power 1.

We now count the number Tg(N) of integers n ≤ N with r2(n) > 0 and such that
g(n) = g, where g is a given squarefull integer all of whose primes are congruent to
1 (mod 4). It is not too difficult to see that

Tg(N) ∼ L
N√
logN

α

g

∏
p|g

(
1 − 1

p

)(
1 − 1

p2

)−1

,

where

α =
∏

p≡ 1mod 4

(
1 − 1

p2

)
=

16L2

π2
,

and where p in these formulae runs over primes. Letting ψ(g) = g
∏

p|g(1 + 1/p), we thus
have that

Tg(N) ∼ 16L3

π2

N

ψ(g)
√

logN
.

Hence, we have Theorem 9.4 with

C0 =
16L3

π2

∑
g

b(d(g))

ψ(g)
,

where g runs over the squarefull integers divisible solely by primes that are congruent to
1 (mod 4). Note that this sum is convergent, which convergence partially justifies the
adding of the asymptotic relations for Tg(N). QED

We do not give a proof of the asymptotic relations for Tg(N), but these can be achieved
as corollaries of the Landau asymptotic formula. In Section 10 we give numerical verifi-
cation of Theorem 9.4. We close the present section with a proof of Lemma 9.5.
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Proof of Lemma 9.5: Let r′(n) denote the number of coprime representations of n as
the sum of two squares. First we count the number of integers n ≤ N for which r′(n) > 0
and for which r′(m) > 0 for some integer m with 0 < |n −m| < B. Note that for r′(m)
to be positive it is necessary that m is not divisible by any prime congruent to 3 (mod 4),
that is, that m3 = 1. (This condition is almost sufficient: to make it sufficient it should
also be the case that m2, the 2-power in m, is not a power of 4.) For a given integer
k > 0, the number of integers n ≤ N with both r′(n) > 0, r′(n + k) > 0 is, by Theorem
2.3 in [13], at most

c′ψ(k)
N

logN
,

where c′ is an absolute constant and where ψ is defined in the proof of Theorem 9.4.
(Actually one can have the smaller factor ψ(d3), but this is unimportant.) Since∑

k≤B

ψ(k) = O(B),

as is easily seen by elementary methods (see [14], Ch. 18), it follows that the number of
n ≤ N with r′(n) > 0, r′(n+k) > 0 for some integer k with 0 < |k| < B is O(BN/ logN).
This proves the lemma for the function r′. To get it for r2(z, n) we generalize the above
proof for the case u2|n, v2|n+ k, where uv is divisible only by primes that are congruent
to 3 (mod 4) and where r′(n/u2) > 0, r′((n+ k)/v2) > 0. For any fixed choice for u, v we
get an estimate of O(ψ(k)N/(u2v2 logN)) for the number of such n ≤ N . Now we sum
over k, u, v getting the lemma. QED

10. Numerical experiments for C0

The intricacies of the borderline number z and its powers show that global bit-density
arguments alone are insufficient to handle low 1’s-density cases: We required number
theory to focus on certain details of the bit pattern. Later in the research, we found that
computational aspects—such as bit-counting—for z2 are nontrivial. In attempts to verify
Theorem 9.4 empirically—in particular, to justify the value of C0—the present authors
were met with considerable computational consternation. There are two basic difficulties
that need be overcome. Note that calculation of C0 from the sum formula is not too
hard, and gives us the cited 0.7996 . . . value that we obtained by summing over squarefull
g ≤ 105, 106, 107 in succession, then extrapolating on the assumption of a reasonable form
for the series-truncation error. The remaining difficulties all pertain to the actual counting
of representations up through some large n.

The first difficulty is that the Landau asymptotic formula is, for all practical purposes,
generally below the mark, in the sense that a more accurate formula, also due to Landau,
is [20] ∑

n≤N

H(r2(n)) = L
N√
logN

(
1 +

C1

logN

)
+ o

(
N

(logN)3/2

)
,
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where C1 = 0.5819 . . . is yet another constant. One might also use the Ramanujan form
[15] ∑

n≤N

H(r2(n)) ∼ L

∫ N

0

dx√
log x

which is reminscent of the logarithmic integral Li(x) which, as is well known, stands as
a better approximation to π(x) than the classic x/ log x. Remarkably, for the original
Landau expression LN/

√
logN to be accurate to say 1 per cent of an empirical count of

representables, one has to go up to about N = e50 ≈ 1022, or about a mole of bits. That
is more than the digital storage presently available on the entire planet.

The second computational difficulty is that the proof of Theorem 9.4 basically tells
us that most r2 values eventually “separate” so that carries do not interfere. When does
separation become significant? A very rough heuristic runs as follows. For very large N
the mean separation between positive representation counts is about

√
logN/L, and this

should be greater than the base-2 logarithm of the largest r2 values of the region. So, and
again this is quite heuristic, for significant separation we should have

√
logN

log logN
≈ 2

L
,

which leads to the estimate of N ≈ 1080 bits, which is an oft-quoted estimate on the
number of protons in the visible universe.

So these difficulties required the authors to calculate entities that converge to reason-
able values for N well below the aforementioned astronomical thresholds. It turns out
that the quantity

C(N) = L

∑
n≤N b(r2(n))∑

n≤N H(r2(n))
∼ C0

is relatively well-behaved, and gives an excellent empirical value for C0 (although, still,
N has to be taken painfully far and extrapolation techniques were required when our
machinery reached its limit, as described below). Notice that this quantity C(N) essen-
tially measures—up to the L factor—the number of bits per positive representation. The
numerical results reported below suggest (and Theorem 9.4 implies) an amusing principle:
The average number of bits in a positive representation count r2(n) is about C0/L = 1.05.
That is, it is a very good bet that a random positive r2 value is a power of 2.

In order to calculate entities for n up to and beyond say 108, we employed a sieving
expedient described in [8] for rapidly obtaining long strings of representation counts. The
algorithm is quite simple:

(1) Create N + 1 bins, say B[0], . . . , B[N ] intended to hold representation counts,
then set B[0] = 1 and zero all other bins.

(2) for(odd d ≤ N) {
if(d ≡ 1 mod 4) add 4 to every B[kd] with kd ≤ N ;
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else subtract 4 from every B[kd] with kd ≤ N ;
}

The result of this algorithm is that r2(n) is sitting in bin B[n] for every n ∈ [0, N ]. In the
following table we denote by

∑
r2 the sum of counts r2(n) through n = N , by

∑
H the

count of representables, by c2 the number of r2(n) being a power-of-two, and by
∑
b the

sum of all bit counts b(r2(n)):

N LN√
log N

∑
H

∑
r2 c2

∑
b #(z2, N) C(N)

106 205605.6 216342 3141552 204082 228646 213480 0.807683
107 1903573.9 1985460 31416028 1877532 2093748 1968680 0.805901
108 17805966.8 18457848 314159056 17482500 19436147 18353248 0.804725

Note the following interesting features of this table. The 1st-order Landau estimate (2nd
column) indeed lags behind the representation count

∑
H. Next, the similarity of

∑
r2

and the decimal digits of π is, of course, not a coincidence: The celebrated Gauss circle
problem starts with the proven estimate

∑
r2 = πN+o(N), whence one focuses attention

on the little-o term. Thus the present sieve technique for counting representations might
be useful in numerical studies of the circle error. We see that indeed all but a few per
cent of representables are a power-of-two (i.e., c2 is close to

∑
H). We stress that the

#(z2, N) column comes from processing of the r2 with carry. Actually, rather than work
out the carry chain for the B[ ] bins, we instead obtained the # column by simply squaring
high-precision z values. For both sheer arithmetic of that sort, or for our divisor-sieve,
our machinery was not able to go up to N = 109. Incidentally this is not because of
CPU power—the sieve is quite fast, as are convolution methods of squaring reals—the
problem is memory. Thus we are forced to extrapolate from the last column of data.
Under Romberg extrapolation and the assumption of exponential approach, we estimate
the final column’s limit to be about 0.802. This extrapolation is within 0.3 per cent of
the theoretical C0 = 0.7996 . . . and so we deem this numerical exercise successful. We
should also mention that the C(N) results, when other N values are included in a larger
table, are remarkably smooth, which in itself suggests the validity of extrapolation.

11. Open problems

Finally, we state some open problems:

• Is there a quantifiable sense in which the binary representation of
√

2 is not truly
random? That is, we observe using the present techniques, that the representation
list (r2(

√
2, 0), . . . , r2(

√
2, N)) for large N cannot have any zero-run of more than

2 lgN consecutive zeros. Evidently this is a hard constraint that one would not
want to put on the representation sequence for a “truly random” bit generator.

• As for the Fibonacci binary X of Corollary 8.2, what is the 1’s density of X2?

27



• What can be said about Fourier representations and bit densities? For example, for
x =

√
2 the simple fact of x2 = 2 can be recast as

2 =

∫ 1

0


 ∑

p∈P(x)

e2πipt

2λp




2

dt

1 − 2λ−1e−2πit
,

where λ ∈ (0, 1) is a free parameter, and in principle such an integral representation
should convey some information about the 1’s positions p in the expansion of

√
2.

• For bases b > 2 there is the difficulty of having more than two possible digits. What
kinds of bounds might be placed on counts of 1’s and 2’s for ternary expansions of
algebraic numbers?

• We have mentioned that the nonquadratic-irrationality Theorem 9.3 may well follow
from the density Theorem 9.4. But there is an impasse which would have to be
overcome. Namely, it turns out that, whereas #(z,N) ∼ √

N , there exist reals
y with much greater than the square-root 1’s density but such that still we have
#(z + y,N) ∼ √

N . That is, adding y to z does not improve the 1’s count. To see
this, define

y =
∑
n>1

2kn − 1

2n2

with arbitrary positive integers kn except for the constraint kn < 2n− 1. When z is
added to such a y, the sets of kn 1’s are each obliterated by carry. This is an impasse
because one cannot just infer the 1’s density of Az2 +Bz merely by observing that
the (rather high) density in Theorem 9.4 dominates the

√
N density.

• The C0 constant of Theorem 9.4 we have estimated as 0.7996 . . . . A fast algorithm
for calculating the Landau constant L itself is given in [11]. (In doing so, they
effectively solved research Problem 1.88 of [7], which asks for a fast method.) Might
there be a similar, fast construction for C0?

• In recent times has emerged the field of “experimental mathematics,” wherein one
uses high-precision numerical relations such as linear reduction to suggest exact
algebraic identities, in this way igniting a profusion of new results and theorems.
One might say that the results of the present paper amount to a kind of “digitally
motivated analysis” (we might abbreviate DMA), in which computers were not
used (except to check various claims), yet results in the analysis field are obtained
by thinking digitally, in our case thinking in binary. (And, we acknowledge the
historical foreshadowing of “DMA”, as in [17] [29], [21].) A question, then, would
be: What other aspects of analysis apart from transcendency might succumb to the
“DMA” approach?
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